Niche recycling through division-independent egress of hematopoietic stem cells
نویسندگان
چکیده
Hematopoietic stem cells (HSCs) are thought to reside in discrete niches through stable adhesion, yet previous studies have suggested that host HSCs can be replaced by transplanted donor HSCs, even in the absence of cytoreductive conditioning. To explain this apparent paradox, we calculated, through cell surface phenotyping and transplantation of unfractionated blood, that approximately 1-5% of the total pool of HSCs enters into the circulation each day. Bromodeoxyuridine (BrdU) feeding experiments demonstrated that HSCs in the peripheral blood incorporate BrdU at the same rate as do HSCs in the bone marrow, suggesting that egress from the bone marrow to the blood can occur without cell division and can leave behind vacant HSC niches. Consistent with this, repetitive daily transplantations of small numbers of HSCs administered as new niches became available over the course of 7 d led to significantly higher levels of engraftment than did large, single-bolus transplantations of the same total number of HSCs. These data provide insight as to how HSC replacement can occur despite the residence of endogenous HSCs in niches, and suggest therapeutic interventions that capitalize upon physiological HSC egress.
منابع مشابه
تاثیر آشیانههای جفتی شبیهسازی شده با داربست پلی لاکتیک اسید در تکثیر سلولهای بنیادی خونساز مشتق از بافت جفت انسانی
Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...
متن کاملBone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
Hematopoietic stem cells (HSCs) reside in specialized bone marrow (BM) niches regulated by the sympathetic nervous system (SNS). Here, we have examined whether mononuclear phagocytes modulate the HSC niche. We defined three populations of BM mononuclear phagocytes that include Gr-1(hi) monocytes (MOs), Gr-1(lo) MOs, and macrophages (MΦ) based on differential expression of Gr-1, CD115, F4/80, an...
متن کاملobilization: an alliterative review
Current Opinion in Hematology 2011, 18:231–238 Purpose of review Blood cell production is maintained by hematopoietic stem cells (HSCs) that reside in specialized niches within bone marrow. Treatment with granulocyte-colony stimulating factor (G-CSF) causes HSC egress from bone marrow niches and trafficking to the peripheral blood, a process termed ‘mobilization’. Although the mobilization phen...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملp62 is required for stem cell/progenitor retention through inhibition of IKK/NF-κB/Ccl4 signaling at the bone marrow macrophage-osteoblast niche.
In the bone marrow (BM), hematopoietic progenitors (HPs) reside in specific anatomical niches near osteoblasts (Obs), macrophages (MΦs), and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated, but the regulatory signals that instruct the immune regulation of HP circulation are unknown. We discovered that the BM microenvir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 206 شماره
صفحات -
تاریخ انتشار 2009